
Optimal Trading with Alpha Predictors

Filippo Passerini

Department of Physics, Princeton University
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Introduction

Introduction

Some alpha strategies are based on daily data.

Others are constructed using high-frequency or intraday signals.

Some strategies benefit from market-making with limit orders.

How can we optimally combine these different alpha streams?

In this work we present a practical framework inspired by the
Hamilton-Jacobi-Bellman (HJB) method.

We do not seek to find exact analytical solutions to the optimization
problem, but to introduce some algorithmic “recipes” which can be
used in real trading.
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Introduction

Introduction

We begin by considering the case of market orders only.

We then study how to optimally use limit orders.

We define the problem in continuous time, but always keeping in
mind the practical implementation, which is in discrete time.

Our framework allows us to take into account linear costs and price
impact.
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Notation

Time Axis

We are allowed to trade from time topen until time T .

We will optimize the integrated P&L from some time t ∈ [topen,T ]
until time 2T .
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Notation

Notation

For simplicity, we will consider a single asset with price Pt . The
dynamics of the price is given by

dPt = αtdt +
√
νdWt

where dt is the time scale of our trading decisions.

Without loss of generality, we will decompose the drift into a constant
ᾱ and intraday component xt with zero mean:

αt := ᾱ + xt , E[xt ] = 0

We can think of ᾱ as the alpha that comes from the daily
predictors, while xt comes from the intraday or HF signals.
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Notation

Notation

At this point we leave the dynamics of xt to be quite general:

dxt = µ(t, xt)dt +
√
η(t, xt)dZt

However, we usually model the fast signal as a mean-reverting process
with constant volatility: dxt = −κxtdt +

√
ηdZt .

For later convenience, we will introduce the differential operator:

D̂t,x :=
∂

∂t
+ µ(t, x)

∂

∂x
+

1

2
η(t, x)

∂2

∂x2
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Notation

Notation

We introduce the integrated gain of the HF signal:

g(t, x) :=

∫ 2T

t
E [xs | xt = x ] ds

which obeys:
D̂t,x · g(t, x) + x = 0

The evolution of our position qt is given by:

dqt = utdt

The optimization problem boils down to finding the optimal
rate of trading ut .
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Optimization with Market Orders

Optimization with Market Orders

We begin by considering the optimal trading problem using market
orders only. The objective function is given by:

Ω(t, x , q) = min
{us |s∈(t,T )}

E
[∫ T

t
C |us |ds + K

∫ T

t
u2
s ds

−
∫ 2T

t
αsqsds +

1

2
λν

∫ 2T

t
q2
s ds

∣∣∣∣ qt = q, xt = x

]
The first term is the cost of the market orders.

The second term serves as a control or regulator for the size of the
trades. One can also see it as coming from market impact.

The third term is the gain coming from the alpha signals.

The last term is a risk control.
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Optimization with Market Orders

Optimization with Market Orders

The constant K can be interpreted as a “regulator” that controls the
average trade size.

However, it can also be interpreted as coming from market impact. In
fact, we can model a general permanent impact function: K

∫
ups ds.

Another useful formulation of the problem is to assume constant and
discretized trading rate, that is u ∈ [−Q, 0,Q].
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Optimization with Market Orders

Optimization with Market Orders

Using the Hamilton-Jacobi-Bellman principle, we can derive the PDE
for the objective function:

D̂t,x · Ω(t, x , q)− (ᾱ + x)q +
1

2
λνq2 + min

u

[
C |u|+ Ku2 +

∂Ω

∂q
u

]
= 0

We can write the optimization as a portfolio tracking problem. For
that, we introduce the daily Markowitz portfolio:

q̄ :=
ᾱ

λν

and a new function:

V (t, x , q) := Ω(t, x , q) + g(t, x)q +
1

2
λνq̄2(2T − t)
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Optimization with Market Orders

Tracking Markowitz

To gain some intuition of the meaning of V it is useful to write it as

V (t, x , q) = min
{us |s∈(t,T )}

E
[∫ T

t
(C |us | − g(s, xs)us) ds

+K

∫ T

t
u2
s ds +

1

2
λν

∫ 2T

t
(qs − q̄)2ds

∣∣∣∣ qt = q, xt = x

]
The first term is the effective cost of the market order once we take
into account the HF predictors.

The last term is the integrated residual risk (variance) of the residual
between our position and the daily Markowitz portfolio.
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Optimization with Market Orders

Tracking Markowitz

The optimization is dual to tracking the Markowitz portfolio using the
fast signals:

D̂t,x · V +
1

2
λν(q − q̄)2 + min

u

[
C |u|+ Ku2 +

(
∂V

∂q
− g

)
u

]
= 0

with boundary condition:

V (T , x , q) =
1

2
λνT (q − q̄)2

The boundary condition is the residual variance around the
Markowitz portfolio.
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Optimization with Market Orders

Trading and No-Trading Zones

The solution to the optimization problem is divided into three regions.

1 g > C + ∂V
∂q . In this case u > 0, so we buy:

u =
1

2K

(
g − C − ∂V

∂q

)
2 g < −C + ∂V

∂q . In this case u < 0, so we sell:

u = − 1

2K

(
−g − C +

∂V

∂q

)
3 −C + ∂V

∂q ≤ g ≤ C + ∂V
∂q . In this case we don’t trade (u = 0).

linear costs induces a “no-trading” zone when using market orders.
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Optimization with Market Orders

Trading and No-Trading Zones

For a constant signal (e.g. xt = 0), the trading zones typically look as
follows:

T"

t"

q"
Sell$Zone$

Buy$Zone$

No/Trading$Zone$

Trading"
trajectory"

b@(t,x)"

b+(t,x)"
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Optimization with Market Orders

Trading and No-Trading Zones

We can summarize the trade rate as:

u =
1

2K

(
g − C − ∂V

∂q

)
+

− 1

2K

(
−g − C +

∂V

∂q

)
+

The full equation for V can now be written in compact form:

D̂t,x · V +
1

2
λν(q − q̄)2 − Ku2 = 0

with boundary condition:

V (T , x , q) =
1

2
λνT (q − q̄)2

Very difficult PDE to solve in general.
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Optimization with Market Orders

Zero volatility regime

In the case of a zero volatility signal, there is no uncertainty and the
optimization problem can be solved exactly using the Euler-Lagrange
variational principle:
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Optimization with Market Orders

Zero volatility regime

A general feature of the solution is that as K → 0 we go
instantaneously to one of the boundaries of the NT zone (if we are
out).

As K →∞ we trade slowly towards the boundary.

In the case of a constant or exponential signal, once we enter the
no-trading (NT) zone, we stay there until the end of the day.

In the stochastic case, however, the boundaries of this region depend
on xt and hence one can go in and out of the region many times.

How can we determine the boundaries of the no-trading zone
for the stochastic case?
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Optimization with Market Orders

Trading and No-Trading Zones

The HJB equation is very difficult to solve in general.

For practical purposes, we propose using the solution that comes from
ignoring the source term −Ku2:

V ≈ 1

2
λν(2T − t)(q − q̄)2

Can we justify this approximation?
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Optimization with Market Orders

Trading and No-Trading Zones

In the limit K →∞, the trading rate goes to zero as u ∼ 1/K and
we’re justified to use the approximation. In fact, one can define a
systematic expansion in 1/K .

The other, more practical limit is when K → 0. In this case, we trade
towards the boundary of the NT zone instantaneously. One can argue
that in this case u diverges, but in practice, the trade size must be
finite and hence

dq = udt = finite

Moreover, in practice dt is finite (e.g. one second). Therefore, u
remains finite as K goes to zero and we can justify our approximation
Ku2 ∼ 0.
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Optimization with Market Orders

Recipe 1

This is, of course, not a formal mathematical proof but only an
argument for our first recipe:

∂V

∂q
= λν(2T − t)(q − q̄)

u =
1

2K

(
g − C − ∂V

∂q

)
+

− 1

2K

(
−g − C +

∂V

∂q

)
+

Within our approximation, the boundaries of the NT zone are given
by:

b±(t, x) = q̄ +
1

λν(2T − t)
(g(t, x)∓ C )
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Optimization with Market Orders

Implementation

One can take dt = 1 to be the basic trading decision scale, and u our
trade size.

If we are small and we can ignore impact, we can take K → 0 and
trade instantaneously towards one of the boundaries.

The Lagrange multiplier λ can be written as:

λ =
Annualized Sharpe Ratio of Daily target

Annualized Volatility of Daily Target

We can take q̄ to be the ideal positions that come from a daily back
test.
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Optimization with Market Orders

Implementation

We can model high-frequency predictors as mean-reverting processes.

In practice, it is useful to decompose our intraday alpha in terms of a
z-score or signal εt with E[εt ] = 0 and Var[εt ] = 1.

We can write:

xt := β
√
νεt

dε = −κεdt +
√

2κdZ
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Optimization with Market Orders

Implementation

The constant β can be conveniently written in terms of the annual
Sharpe ratio of the ideal HF position q̃t = εt/

√
ν:

β =
Annualized Sharpe Ratio of HF Signal√

252T

The gain is then:

g(t, ε) =
β
√
νε

κ

(
1− e−κ(2T−t)

)
≈ β
√
νε

κ

where the last approximation is valid if the time scale of the predictor
is much smaller than one day.
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Optimization with Market Orders

Simulation

In the following figure, we show a Monte Carlo simulation of our
algorithm.

We trade directly to the boundary of the NT zone in one shot.

Our decision time scale is dt = 1 minute.

The intraday signal has a mean-reversion of 30 mins.

The daily signal is constant during the day, but varies from day to day
with a mean-reversion time scale of 10 days and a annual Sharpe of 2.

Other relevant parameters are ν = 0.01, C = 0.01, λ = 37.4, β = 1
(Sharpe = 16.5).
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Optimization with Market Orders

Simulation
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Optimization with Market Orders and Limit Orders

Limit Orders

We can use the same HJB framework with limit orders.

Our position will now evolve according to:

dqt = (m+
t −m−t + 1+

t l
+
t − 1−t l

−
t )dt , m±t , l

±
t ≥ 0

where m±t and l±t are the sizes of the market and limit orders, and
1±t = 1 if the limit order is executed in the interval dt and zero
otherwise.

Hence, we assume that our limit orders are small enough to be filled
in one shot (we ignore partial fills).
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Optimization with Market Orders and Limit Orders

Assumptions

We also assume that we place limit orders at the top of the book and
hence do not optimize for their price. However, this optimization can
easily be implemented within our framework.

At the end of the interval dt all pending limit orders are canceled.

We do not allow a limit and market order with the opposite sign as
they will trivially execute against each other. Hence, one must choose
one or the other. However, we are allowed to send both a limit buy
and sell order (market making).

We will ignore price impact and simply cap the size of out trades:

m± ∈ [0,Q]

l± ∈ [0,Q]

m± + l± ∈ [0,Q]
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Optimization with Market Orders and Limit Orders

Fill Probabilities

Let P+,P− be the conditional probability that a limit buy and sell
order will be filled within the next time step dt.

So far we have modeled the price in our decision interval dt as a
diffusion process. However, in real life, there are price movements
inside dt which are discrete (tick-by-tick). These are the movements
which must be predicted by P±.

Hence for limit orders, we must have a very short term
predictor yt which might be different from the longer-term
intraday alpha xt .

P±(t, x , y) := E[1±t |xt = x , yt = y ]
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Optimization with Market Orders and Limit Orders

The HJB Equation

The HJB Equation takes the following form:

0 = D̂t,x ,y · V +
1

2
λν(q − q̄)2

+ min
m±,l±

[
m+

(
C +

∂V

∂q
− g

)
− P+l+

(
C − ∂V

∂q
+ g

)
+m−

(
C − ∂V

∂q
+ g

)
− P−l−

(
C +

∂V

∂q
− g

)]
Note that, in general, the dependency of the probabilities and the
gain are of the following form:

P± = P±(t, x , y) , g = g(t, x)
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Optimization with Market Orders and Limit Orders

Optimization

Our trading decisions are based on the optimization over m±, l± in
the HJB equation.

As in the case of market orders, we find different trading regions.

There are in total five regions:
1 g > C 1+P+

1−P+ + ∂V
∂q we send a buy market order.

2 C + ∂V
∂q < g < C 1+P+

1−P+ + ∂V
∂q we send a buy limit order.

3 −C + ∂V
∂q ≤ g ≤ C + ∂V

∂q we send both a buy and a sell limit order.

4 −C 1+P−

1−P− + ∂V
∂q < g < −C + ∂V

∂q we send a sell limit order.

5 g < −C 1+P−

1−P− + ∂V
∂q we send a sell market order.

Filippo Passerini Optimal Trading with Alpha Predictors 31 / 41



Optimization with Market Orders and Limit Orders

T"

t"

q"

Buy$Market$Zone$

Market.Making$Zone$
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b+(t,x)"Buy$Limit$Zone$

Sell$Market$Zone$
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~

~

The no-trading region is now replaced by a market-making region.
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Optimization with Market Orders and Limit Orders

Recipe 2

What are the optimal value of Q?

As in the case of market orders, in the absence of impact, we would
like to trade as much as possible. However, we should not cross
trading regions because this will lead to more unnecessary
back-and-forth trading in the future.

Hence, it is optimal to trade to the boundary of our current
trading region.
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Optimization with Market Orders and Limit Orders

Recipe 2

As in the case of market orders, a full solution of HJB seems hopeless.

We approximate V to be the value function of the no-trading zone:

V (t, x , q) ≈ 1

2
λν(2T − t)(q − q̄)2

We can write the boundaries explicitely:

b±(t, x) = q̄ +
1

λν(2T − t)
(g(t, x)∓ C )

b̃±(t, x ,P±) = q̄ +
1

λν(2T − t)

(
g(t, x)∓ C

1 + P±

1− P±

)
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Optimization with Market Orders and Limit Orders

Implementation

For simplicity, we will assume that the spread is constant (one tick)
and hence limit orders are only executed if there is a mid price move
in the right direction.

In our simplistic case with constant spread, we find that it is
suboptimal to send both buys and sells limit orders at the same time
(market making). Instead, it is optimal to not trade in this region.
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Optimization with Market Orders and Limit Orders

Implementation

For our simulations, in order to capture the very short-term behavior
of the price relevant to limit orders, we decompose our intraday alpha
as a “slow” (εt) and “fast” (ε̃t) predictors:

dPt = (ᾱ + xt)dt +
√
νdWt

xt =
√
ν
(
βεt + β̃ε̃t

)
dεt = −κεtdt +

√
2κdZt

d ε̃t = −κ̃ε̃tdt +
√

2κ̃dZ̃t
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Optimization with Market Orders and Limit Orders

Implementation

The mean reversion scale of ε̃t will be of the order of dt:

κ̃ ∼ 1/dt

In this case, the fill probabilities will be functions of ε̃ only, while the
long-term integrated gain will be only a function of εt :

P± ≈ P±(ε̃) , g(t, ε) ≈ β
√
νε

κ
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Optimization with Market Orders and Limit Orders

Simulation

In the next figure we show the result of a Monte Carlo simulation
with our simple limit/market order algorithm.

All parameters are the same as in our previous simulation, with the
exception of the new signal ε̃t .

We take this signal to have a mean-reversion time scale of 1 minute
(dt) and β̃ = 13.

As in the previous simulation, we trade instantaneously towards the
boundary of our zone.

We find a mild improvement from the use of limit orders.
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Optimization with Market Orders and Limit Orders

Simulation
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Conclusions

Conclusions

We have developed a general framework to think about optimal
algorithmic trading using Hamilton-Jacobi-Bellman theory.

Even tough the HJB equations cannot be solved exactly, we have
presented various analytic “recipes” or algorithms which are inspired
on general features of the exact solution.

Our framework has allowed us to unify, not only daily and intraday
alpha signals, but also market and limit orders.
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O. Guéant, C.A. Lehalle, J. Fernandez-Tapia, Dealing with the inventory risk: a solution to the market making problem,
Mathematics and Financial Economics 7:477-507, 2013.

F. Guilbaud and H. Pham, Optimal high frequency trading with limit and market orders, Quantitative Finance, 13,
79-94, 2013.

F. Guilbaud and H. Pham, Optimal high-frequency trading in a pro-rata microstructure with predictive information,
arXiv:1205.3051, 2012.

R. Cont and A. Kukanov, Optimal order placement in limit order markets, arXiv:1210.1625, 2012.

X. Guo, A. de Larrard and Z. Ruan, Optimal Placement in a Limit Order Book, Available at SSRN:
http://ssrn.com/abstract=2318220, 2013.

R. Huitema, Optimal Portfolio Execution using Market and Limit Orders, Available at SSRN:
http://ssrn.com/abstract=1977553, 2014.

Filippo Passerini Optimal Trading with Alpha Predictors 41 / 41


	Introduction
	Notation
	Optimization with Market Orders
	Optimization with Market Orders and Limit Orders
	Conclusions
	References

