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Introduction

• Supersymmetry provides a simplified framework to study Quantum Field Theory
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Introduction

• Supersymmetry provides a simplified framework to study Quantum Field Theory

• N = 4 SYM: many novel tools for the weak and strong coupling dynamics of

quantum fields (AdS/CFT, Pestun Localization, Integrability, . . . )

Next Step: reduce the symmetry ⇒ increase complexity of the theory

N = 2 Gauge Theories

Interesting features: matter fields, non-trivial instanton dynamics, . . .

Also for these theories, the strong coupling dynamics can be studied using

• Pestun Localization: reduce the field theory path integral to a matrix integral, for

any value of the gauge coupling. VEV of certain non-local operators can be

computed using a matrix model. Matrix model is known for any N = 2 theory.

• AdS/CFT: relates the strong coupling of the gauge theory to string theory in a

certain backgroud. The string dual is not known for most of the N = 2 theory.
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Introduction

• Supersymmetry provides a simplified framework to study Quantum Field Theory

• N = 4 SYM: many novel tools for the weak and strong coupling dynamics of

quantum fields (AdS/CFT, Pestun Localization, Integrability, . . . )

Next Step: reduce the symmetry ⇒ increase complexity of the theory

N = 2 Gauge Theories

Interesting features: matter fields, non-trivial instanton dynamics, . . .

Also for these theories, the strong coupling dynamics can be studied using

• Pestun Localization: reduce the field theory path integral to a matrix integral, for

any value of the gauge coupling. VEV of certain non-local operators can be

computed using a matrix model. Matrix model is known for any N = 2 theory.

• AdS/CFT: relates the strong coupling of the gauge theory to string theory in a

certain backgroud. The string dual is not known for most of the N = 2 theory.

Use the exact results of Pestun to study the string dual of N = 2 theories !!

Filippo Passerini 2-e King’s College London, March 14 2012
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Outline

• introduction

• Wilson loop in N = 2 gauge theory

• Pestun localization: VEV of a Wilson loop from matrix model

• Wilson loop in N = 4 SYM

• Wilson loop in N = 2 SCYM

- weak coupling

- strong coupling

• conclusion

Filippo Passerini 3 King’s College London, March 14 2012
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N = 2 Gauge Theory
[

Salam, Strathdee

][

Fayet

][

Sohnius, Stelle, West

][

. . .

]

can be constructed using the following building blocks

• N = 2 vector multiplet (Aµ,Φ1,Φ2, λ1, λ2) in the adjoint rep. of the gauge group

• N = 2 hypermultiplet (Φ3,Φ4,Φ5,Φ6, χ3, χ4) in some rep. of the gauge group

Filippo Passerini 4 King’s College London, March 14 2012
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N = 2 Gauge Theory
[

Salam, Strathdee

][

Fayet

][

Sohnius, Stelle, West

][

. . .

]

can be constructed using the following building blocks

• N = 2 vector multiplet (Aµ,Φ1,Φ2, λ1, λ2) in the adjoint rep. of the gauge group

• N = 2 hypermultiplet (Φ3,Φ4,Φ5,Φ6, χ3, χ4) in some rep. of the gauge group

An interesting example is the N = 2 SU(N) SCYM:

N N

vectorhypers hypers

• 2N hypermultiplets coupled to SU(N) vector multiplet, i.e. NF = 2NC

⇒β-function vanishes at any loop, conformal QFT
[

Howe, Stelle, West

]

• it is expected to have a string theory dual, that is not know yet. The string dual

should have a SO(2, 4) bosonic symmmetry

Filippo Passerini 4-a King’s College London, March 14 2012
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SUSY Wilson Loops in N = 2 Gauge Theory

in a theory with at least a vector multiplet (Aµ,Φ1,Φ2, λ1, λ2), one can define

WR(C) =
1

N
trRP exp

[
∫

C

ds (iAµ(x)x́
µ + nIΦI(x)|x́|)

]

• R a representation of the gauge group

• 1
2BPS observable when C = Circle

Filippo Passerini 5 King’s College London, March 14 2012
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SUSY Wilson Loops in N = 2 Gauge Theory

in a theory with at least a vector multiplet (Aµ,Φ1,Φ2, λ1, λ2), one can define

WR(C) =
1

N
trRP exp

[
∫

C

ds (iAµ(x)x́
µ + nIΦI(x)|x́|)

]

• R a representation of the gauge group

• 1
2BPS observable when C = Circle

The VEV SUSY Wilson loops in N = 2 can be computed using a matrix model
[

Pestun

]

〈WR(Circle)〉 = Matrix Model

Exact result: weak and strong coupling

Study the VEV of the Wilson loops at weak and strong coupling to investigate N = 2

gauge theories and their gravity duals !!

Filippo Passerini 5-a King’s College London, March 14 2012
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Pestun Localization

• from quantum fields (infinite DOF) to matrices (finite DOF)

Filippo Passerini 6 King’s College London, March 14 2012
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Pestun Localization

• from quantum fields (infinite DOF) to matrices (finite DOF)

Basic idea: Given a partition function for an N = 2 gauge theory

Z =

∫

DΨe−S[Ψ] Ψ = fields

• choose a fermionic sym. Q, i.e. QS[Ψ] = 0

• choose a functional V [Ψ], such that Q2V [Ψ] = 0
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• from quantum fields (infinite DOF) to matrices (finite DOF)

Basic idea: Given a partition function for an N = 2 gauge theory

Z =

∫

DΨe−S[Ψ] Ψ = fields

• choose a fermionic sym. Q, i.e. QS[Ψ] = 0

• choose a functional V [Ψ], such that Q2V [Ψ] = 0

A deformation QV [Ψ] of the action does not change the path integral

Z(t) =

∫

DΨe−(S[Ψ]+tQV [Ψ]) dZ(t)

dt
= 0

-t = 0 the original path integral (hard)

-t = ∞ saddle point techniques (easy)
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Pestun Localization

• from quantum fields (infinite DOF) to matrices (finite DOF)

Basic idea: Given a partition function for an N = 2 gauge theory

Z =

∫

DΨe−S[Ψ] Ψ = fields

• choose a fermionic sym. Q, i.e. QS[Ψ] = 0

• choose a functional V [Ψ], such that Q2V [Ψ] = 0

A deformation QV [Ψ] of the action does not change the path integral

Z(t) =

∫

DΨe−(S[Ψ]+tQV [Ψ]) dZ(t)

dt
= 0

-t = 0 the original path integral (hard)

-t = ∞ saddle point techniques (easy)

since Z(0) = Z(∞), use saddle point techniques to exactly compute a path integral !

Filippo Passerini 6-c King’s College London, March 14 2012
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• gauge theory on S4

• choose a charge Q that preserves the Wilson loop

• saddle points Ψ0 satisfy QV [Ψ0] = 0

– S4 w/o poles, the adjoint scalar assumes a constant value 〈Φ〉 = M , and all

the other fields vanish

– at the poles, there are point like instantons

• quantum contributions are encoded by quadratic fluctuations around the saddle

points

Filippo Passerini 7 King’s College London, March 14 2012
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• gauge theory on S4

• choose a charge Q that preserves the Wilson loop

• saddle points Ψ0 satisfy QV [Ψ0] = 0

– S4 w/o poles, the adjoint scalar assumes a constant value 〈Φ〉 = M , and all

the other fields vanish

– at the poles, there are point like instantons

• quantum contributions are encoded by quadratic fluctuations around the saddle

points

Z(0) = Z(∞), integration over fields is equivalent to integration over saddle points

Z =

∫

DΨe−S[Ψ] =

∫

DMe−S[M ]Z1-loop(M)Zinst(M)

• S[M ] = − 8π2

g2 Tr(M2)

• Z1-loop(M) and Zinst(M) depend on the specific N = 2 theory
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• gauge theory on S4

• choose a charge Q that preserves the Wilson loop

• saddle points Ψ0 satisfy QV [Ψ0] = 0

– S4 w/o poles, the adjoint scalar assumes a constant value 〈Φ〉 = M , and all

the other fields vanish

– at the poles, there are point like instantons

• quantum contributions are encoded by quadratic fluctuations around the saddle

points

Z(0) = Z(∞), integration over fields is equivalent to integration over saddle points

Z =

∫

DΨe−S[Ψ] =

∫

DMe−S[M ]Z1-loop(M)Zinst(M)

• S[M ] = − 8π2

g2 Tr(M2)

• Z1-loop(M) and Zinst(M) depend on the specific N = 2 theory

1
2 BPS Wilson loop can be computed as an observable of the matrix model

〈WR(Circle)〉 = 〈 1
N trRe

2πM 〉Matrix Model

Filippo Passerini 7-b King’s College London, March 14 2012
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Simplest case: N = 4 SYM

N = 4 SYM is an N = 2 vector multiplet coupled to an adjoint massless N = 2 hyper

• for this theory Z1-loop = Zinst = 1

• therefore the associated matrix model is the Gaussian matrix model
[

Erickson, Semenoff, Zarembo

][

Drukker, Gross

]

ZGauss =

∫

DMe
− 8π2

g2
Tr(M2)

Filippo Passerini 8 King’s College London, March 14 2012
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Simplest case: N = 4 SYM

N = 4 SYM is an N = 2 vector multiplet coupled to an adjoint massless N = 2 hyper

• for this theory Z1-loop = Zinst = 1

• therefore the associated matrix model is the Gaussian matrix model
[

Erickson, Semenoff, Zarembo

][

Drukker, Gross

]

ZGauss =

∫

DMe
− 8π2

g2
Tr(M2)

Diagonalizing M

ZGauss =

∫

dN−1a
∏

i<j

(ai − aj)
2
e
− 8π2

g2

∑

i
a2

i

and the expectation value of the circular Wilson loop

〈W (Ccircle)〉N=4 =

〈

1

N

∑

i

e 2πai

〉

Gauss

Filippo Passerini 8-a King’s College London, March 14 2012
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Large N limit: N → ∞ with λ = Ng2 fixed

ZGauss =

∫

dN−1a e−NS(a) S(a) =
∑

i

8π2

λ
a2i −

1

N

∑

i<j

ln (ai − aj)
2

Saddle point equation: 8π2

λ ai − 1
N

∑

j 6=i

(

1
ai−aj

)

= 0

Filippo Passerini 9 King’s College London, March 14 2012
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Large N limit: N → ∞ with λ = Ng2 fixed

ZGauss =

∫

dN−1a e−NS(a) S(a) =
∑

i

8π2

λ
a2i −

1

N

∑

i<j

ln (ai − aj)
2

Saddle point equation: 8π2

λ ai − 1
N

∑

j 6=i

(

1
ai−aj

)

= 0

• introducing the eigenvalue distribution ρ(x) = 1
N

∑

i δ (x− ai) defined in (−µ, µ)

- saddle point equation

−
∫ µ

−µ

dy ρ(y)

(

1

x− y

)

=
8π2

λ
x

∫ µ

−µ

ρ(x) = 1

- Wilson loop VEV

〈W (Ccircle)〉N=4 =

∫ µ

−µ

ρ(x)e2πx

• the density is the Wigner semicircle ρ(x) = 8π
λ

√

µ2 − x2, with µ =
√
λ

2π

Filippo Passerini 9-a King’s College London, March 14 2012
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Large N limit: N → ∞ with λ = Ng2 fixed

ZGauss =

∫

dN−1a e−NS(a) S(a) =
∑

i

8π2

λ
a2i −

1

N

∑

i<j

ln (ai − aj)
2

Saddle point equation: 8π2

λ ai − 1
N

∑

j 6=i

(

1
ai−aj

)

= 0

• introducing the eigenvalue distribution ρ(x) = 1
N

∑

i δ (x− ai) defined in (−µ, µ)

- saddle point equation

−
∫ µ

−µ

dy ρ(y)

(

1

x− y

)

=
8π2

λ
x

∫ µ

−µ

ρ(x) = 1

- Wilson loop VEV

〈W (Ccircle)〉N=4 =

∫ µ

−µ

ρ(x)e2πx

• the density is the Wigner semicircle ρ(x) = 8π
λ

√

µ2 − x2, with µ =
√
λ

2π

Therefore the VEV of the circular Wilson loop in the ’t Hooft limit is

〈W (Ccircle)〉N=4 =
2√
λ
I1(

√
λ)

Filippo Passerini 9-b King’s College London, March 14 2012
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• Weak coupling λ ≪ 1

〈W (Ccircle)〉N=4 =
∞
∑

n=0

(λ/4)n

n!(n+ 1)!
= 1 +

λ

8
+

λ2

192
+

λ3

9216
+ . . .

in agreement with perturbation theory

• Strong coupling λ ≫ 1

〈W (Ccircle)〉N=4 ≃
√

2

π
λ−3/4e

√
λ

in agreement with the result obtained in the string theory dual

(i.e. IIB strings AdS5 × S5 )

Filippo Passerini 10 King’s College London, March 14 2012
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Wilson loops in AdS/CFT

• consider a conformal theory in 4D ⇒ SO(4, 2) is part of the bosonic symmetry

• the dual background should include an AdS5 factor

The gauge theory lives on the boundary of the AdS5 and the Wilson loop is

associated to an open string that ends on the loop
[

Maldacena

][

Rey, Yee

]

〈W (C)〉 =
∫

∂X=C

DXe−T S[X]

• T is the string tension, S[X] is the area functional

Filippo Passerini 11 King’s College London, March 14 2012
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Wilson loops in AdS/CFT

• consider a conformal theory in 4D ⇒ SO(4, 2) is part of the bosonic symmetry

• the dual background should include an AdS5 factor

The gauge theory lives on the boundary of the AdS5 and the Wilson loop is

associated to an open string that ends on the loop
[

Maldacena

][

Rey, Yee

]

〈W (C)〉 =
∫

∂X=C

DXe−T S[X]

• T is the string tension, S[X] is the area functional

for the case C = circle, in the regime T → ∞
[

Drukker,Gross

]

〈W (C)〉N=4 ≃ KT−3/2e2π T

N=4 SYM: the dual string theory is IIB on AdS5 × S5 with tension

T =
R2

2πα′ =

√
λ

2π

and the string theory computation is in agreement with the matrix model result !!

Filippo Passerini 11-a King’s College London, March 14 2012
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N = 2 SU(N) SCYM: N N

vectorhypers hypers

We can probe the unknown string dual computing the VEV of the circular Wilson

loop in the regime N → ∞ and λ ≫ 1.

Filippo Passerini 12 King’s College London, March 14 2012
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N = 2 SU(N) SCYM: N N

vectorhypers hypers

We can probe the unknown string dual computing the VEV of the circular Wilson

loop in the regime N → ∞ and λ ≫ 1.

Partition function for N = 2 SU(N) SCYM:
[

Pestun

]

Z =

∫

dN−1a
∏

i<j

(ai − aj)
2
e
− 8π2

g2

∑

i

a2

iZ1-loop(a)
∣

∣Zinst(a; g
2)
∣

∣

2

• 1-loop contribution

Z1-loop =

∏

i<j H
2(ai − aj)

∏

iH
2N (ai)

where H(x) = e−(1+γ)x2

G(1 + ix)G(1− ix) and G(z) Barnes function

• instanton contribution

Zinst(a; g
2) = 1 + w1(a)e

− 8π2

λ N + w2(a)e
−
(

8π2

λ N
)

2
+ . . . N → ∞, w1 ∝

√
N

Filippo Passerini 12-a King’s College London, March 14 2012
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Large N limit: Zinst(a; g
2) = 1 no instanton contribution

• effective action

S(a) =
∑

i

(

8π2

λ
a2i + 2 lnH(ai)

)

− 1

N

∑

i<j

(

ln (ai − aj)
2
+ 2 lnH(ai − aj)

)

• saddle point equation

8π2

λ
ai −K(ai)−

1

N

∑

j 6=i

(

1

ai − aj
−K (ai − aj)

)

= 0

where K(x) = −H′(x)
H(x)

-3 -2 -1 1 2 3

-10

-5

5

10

K(x) ≈ 2x lnx (x → +∞)

K(x) ≈ 2ζ(3)x3 (x → 0))

Filippo Passerini 13 King’s College London, March 14 2012
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• saddle point equation in the continuum limit

−
∫ µ

−µ

dy ρ(y)

(

1

x− y
−K(x− y)

)

=
8π2

λ
x−K(x)

ρ(x) = ?

• not easy to solve this integral equation exactly. Focus on the weak and strong

coupling regime.

Filippo Passerini 14 King’s College London, March 14 2012
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• saddle point equation in the continuum limit

−
∫ µ

−µ

dy ρ(y)

(

1

x− y
−K(x− y)

)

=
8π2

λ
x−K(x)

ρ(x) = ?

• not easy to solve this integral equation exactly. Focus on the weak and strong

coupling regime.

Weak coupling regime λ ≪ 1

• strong attractive potential for the eigenvalues

⇒ the eigenvalues are in the interval (−µ, µ) with µ ≪ 1

• therefore K(x) = −2
∑∞

n=1(−1)nζ(2n+ 1)x2n+1 (Taylor expansion)

• truncating the expansion of K(x) is possible to obtain an approximate expression

for ρ(x) and for the VEV of the Wilson loop

Filippo Passerini 14-a King’s College London, March 14 2012
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ρ(x) =
8π

λ

√

µ2 − x2 − 1

π2
−
∫ µ

−µ

dy

x− y

√

µ2 − x2

µ2 − y2

∫

dz ρ(z) (K(y − z)−K(y))

Perturbative scheme:

• lowest order K(x) = 2ζ(3)x3

• Use the truncated K(x) to compute ρ(x)

ρm2,µ,λ(x) =
(

8π
λ + 6ζ(3)m2

π

)

√

µ2 − x2 where m2 =
∫ µ

−µ
dz ρ(z)z2

• Consistency condition m2 =
∫ µ

−µ
dz ρm2,µ,λ(z)z

2 ⇒ m2 = m2(µ, λ)

• normalization
∫ −µ

µ
ρµ,λ(z) = 1 ⇒ µ =

√
λ

2π − 3ζ(3)λ5/2

256π5 + . . .

Filippo Passerini 15 King’s College London, March 14 2012
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• therefore we obtain the approximated density depending on λ, ρλ(x)

0.000 0.005 0.010 0.015
x

10

20

30

40

Ρ!x"

• the Wilson loop VEV

〈W (Ccircle)〉 = 1 +
λ

8
+

λ2

192
+

(

1

9216
− 3ζ(3)

512π4

)

λ3 + . . .

first difference respect N = 4 is at O(λ3), in agreement with perturbative

calculation
[

Andree, Young

]

Filippo Passerini 16 King’s College London, March 14 2012
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This perturbative scheme can be pushed to arbitrary high order in λ

〈W (Ccircle)〉 = 1 +
λ

8
+

λ2

192
+

(

1

9216
− 3ζ(3)

512π4

)

λ3

+

(

1

737280
− 2π2ζ(3)− 15ζ(5)

4096π6

)

λ4

+

(

1

88473600
− 3π4ζ(3)− 65π2ζ(5)− 12

(

9ζ(3)2 − 35ζ(7)
)

196608π8

)

λ5

+

(

1

14863564800
+

−2π2ζ(3) + 85ζ(5)

7864320π6

+
π2
(

180ζ(3)2 − 637ζ(7)
)

− 45(60ζ(3)ζ(5)− 91ζ(9))

3145728π10

)

λ6

+

(

1

3329438515200
+

−π2ζ(3) + 70ζ(5)

377487360π6

+
3π2

(

108ζ(3)2 − 343ζ(7)
)

− 126(110ζ(3)ζ(5)− 153ζ(9))

150994944π10

−27
(

360ζ(3)3 − 1900ζ(5)2 − 3360ζ(3)ζ(7) + 4697ζ(11)
)

150994944π12

)

λ7

+ O(λ8)

Filippo Passerini 17 King’s College London, March 14 2012
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Strong coupling regime λ ≫ 1

The effect of k(x) change things significantly: strong repulsive central force and

attractive 2-body interaction.

!

!

!

!

!

!
!

! ! ! ! ! ! ! ! ! ! ! !
!

0.01 0.1 1 10 100 1000 10
4

Λ

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Μ! Λ
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Limiting case, λ = ∞
• distribution ρ∞(x) for eigenvalues x ∈ (−∞,∞)

• saddle point

−
∫ +∞

−∞
dy ρ∞(y)

(

1

x− y
−K(x− y)

)

= −K(x).

0 1 2 3 4

x0.0

0.1

0.2

0.3

0.4

0.5
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Limiting case, λ = ∞
• distribution ρ∞(x) for eigenvalues x ∈ (−∞,∞)

• saddle point

−
∫ +∞

−∞
dy ρ∞(y)

(

1

x− y
−K(x− y)

)

= −K(x).

• Fourier transform: ρ∞(x) =
∫∞
−∞

dω
2π e

−iωxρ∞(ω), K(x) =
∫∞
−∞

dω
2π e

−iωxK(ω)

ρ∞(ω) =
1

coshω
ρ∞(x) =

1

2 cosh πx
2

0 1 2 3 4

x0.0

0.1

0.2

0.3

0.4

0.5

Ρ!x"
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λ ≫ 1, λ < +∞

• given an observable O(x), it results 〈O(x)〉λ≫1 ≃
∫ +∞
−∞ dx ρ∞(x)O(x) only if

O(x) < e
πx
2 at large x

• 〈W (C)〉λ≫1 =
∫ +µ

−µ
dx ρ(x)e2πx ≃ e2πµ, therefore need to compute µ = µ(λ)
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λ ≫ 1, λ < +∞

• given an observable O(x), it results 〈O(x)〉λ≫1 ≃
∫ +∞
−∞ dx ρ∞(x)O(x) only if

O(x) < e
πx
2 at large x

• 〈W (C)〉λ≫1 =
∫ +µ

−µ
dx ρ(x)e2πx ≃ e2πµ, therefore need to compute µ = µ(λ)

Wiener-Hopf method: generalization of the Fourier transform for the case when an

integral equation is defined on a semi-infinite interval

• in the regime λ ≫ 1, the Fourier transform of the distribution ρ(ω)

ρ(ω) =
1

coshω
+

2 sinh2 ω
2

coshω
F (ω) +G−(ω) e

iµω
∞
∑

n=0

rn e
−µνn

ω + iνn
(1− F (−iνn))
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• Wilson loop VEV

〈W (Ccircle)〉λ≫1 = ρ(−2πi) = R

√
µ

λ
e2πµ

• normalization condition for ρ(ω) gives

C
√
µ e πµ/2 = λ
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Qualitative estimates: near the endpoint µ the distribution is determined by the

attractive force and the repulsive 2-body interaction

⇒ Wigner semicircle ρ(x) ∼ 8π
λ

√

µ2 − x2

• Wilson loop VEV 〈W (Ccircle)〉λ≫1 ≃ 8π
λ

∫ µ
dx
√

µ2 − x2 e 2πx = 2
√
µ

λ e 2πµ

• normalization condition
∫ ∞

µ

dx ρ∞(x) ≃
∫ µ

µ−z0

dx
8π

λ

√

µ2 − x2 → C
√
µ e πµ/2 = λ
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combining the two expressions

〈W (Ccircle)〉λ≫1 = const
λ3

(lnλ)
3/2
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combining the two expressions

〈W (Ccircle)〉λ≫1 = const
λ3

(lnλ)
3/2

that is equivalent to the string theory prediction

〈W (Ccircle)〉λ≫1 = KT−3/2e2π T

considering

T =
3

2π
lnλ
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Conclusions

• we compute the weak coupling VEV of the Wilson loop in N = 2 SCYM at

arbitrary high number of loops

• at strong coupling, the VEV of the loop has a stringy behaviour, although the

tension of the string is related to the gauge theory coupling in an unusual way

• the strong coupling result carries information about the unknown string dual

• other interesting probes for the string dual are the Wilson loop in higher rank

representation
[

Fraser, Kumar

]

• there are Pestun matrix models for a large class of N = 2 theories. Interesting to

study other examples.
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